

5 reasons you should invest in AI today
AI (AI) and machine learning (ML) have experienced numerous ground-breaking advancements during recent decades. Here’s why you should invest in AI and ML today.
Data is like oil that keeps the engines of the Industrial Internet of Things running. With Artificial Intelligence, processing vast amounts of data is no longer an insurmountable task. Machines do this at thousands of times the speed of humans. Industries can make quicker decisions of greater accuracy.
For efficient and quick data processing, one of the main objectives achieved is the identification of changes or discrepancies in datasets,in other words, anomaly detection.
As humans, we are conditioned from birth to distinguish between the normal and abnormal in the world we inhabit. For example, in a basket of apples, the presence of a single orange immediately leaps to the eye. Similarly, Anomaly detection in AI means discovering abnormal deviations from the pattern of the datasets.
In the process, the machine first recognizes a pattern as “normal”, and on this basis, roots out the events that do not adhere to the pattern. Setting the “normal” itself is a highly complicated process, given that datasets may be labeled or unlabeled.
With AI, many industrial operations that can safely be entrusted to machines are rapidly becoming automated. Under this new climate, understanding how these machines work is important for industries to get a clear picture of their business.
Data inflow happens at a rapid pace, and anomaly detection is essential to detect potential risks or threats to security; a basic example is multiple failed attempts at a log-in. The faster these risks are found, the safer the operations. The detection of these aberrations helps in analyzing their nature and cause, whether they are deliberate or otherwise.
A delay of even one minute in anomaly detection can mean a loss of millions of dollars to big concerns such as Google. Manual detection takes up time, and time is money in business. Statistical Process Control or SPC is the standard system by which statistical tools are used to control and monitor industrial processes.
Data that do not fall within the limits set by SPC are considered potential causes for problems in the production process and are followed up for solutions. While SPC is a sound system, it cannot survive on its own. Here are major reasons why manual detection and SPC fall short.
AI and SPC when combined become a powerful tool for anomaly detection. With smart machines, greater accuracy and precision are ensured.
AI lifts a great load off human resources, which are too limited in availability to handle the complex workings of the cloud infrastructure.
Some of the major tasks AI performs are
In machines, the learning process happens through stages, some automatic and some assisted manually. First, the system is fed with datasets which it studies to build a data model. Every time transactions happen, they are compared with the model. Any transaction that does not adhere to the model is considered a possible anomaly. A domain expert will approve of the anomaly, and the system will learn from this and continue working to improve its data model.
Anomaly detection can be carried out through Supervised Machine Learning, Unsupervised Machine Learning, and Semi-supervised Machine Learning.
Under this method, the datasets are labeled. There are accompanying sets of normal samples and abnormal samples based on which data models are built by the machine. Algorithms learn on these models and help it to respond to new data using its knowledge of the existing data. Most machine learning is supervised learning.
Regression and Classification are the two major types of supervised learning. Under regression, the data is matched, whereas classification segregates the data. Supervised learning is majorly applied in Bioinformatics and Database marketing.
Here datasets are not labeled; the algorithms work on their own without reference to known or labeled inputs or outputs unlike in supervised learning. The underlying nature of the data itself is studied to come up with correlations and patterns like humans learn to form conclusions when faced with some information. Deep learning and neural network techniques find applications here. Clustering and Association are two types of unsupervised learning.
Semi-supervised machine learning forms the middle ground between the above two. Here labeled data works in conjunction with a large volume of unlabeled data. Speech analysis and Web page classification are examples of where this method finds application.
AI-assisted anomaly detection is changing the way most industries work for the better. Through the insights it provides, businesses save time, money and reputation, and run smoother operations.
Many sectors are using AI-based anomaly detection. A few examples are
Anomaly detection is a significant function of Machine Learning. The field poses many challenges due to the nature and volume of in-flowing data. The advancements in AI and ML can be used to increase the scope of anomaly harness its potential to increase value to the business.
Get a free copy of the case study.
AI (AI) and machine learning (ML) have experienced numerous ground-breaking advancements during recent decades. Here’s why you should invest in AI and ML today.
Responsible AI is a framework that registers how an organization is addressing the challenges around artificial intelligence (AI) from an ethical and legal perspective.
AI content personalization is one of the more recent and popular use cases of artificial intelligence.
© 2020 Brainalyzed. All rights reserved. Imprint Privacy Policy Terms and Conditions